Part Number Hot Search : 
F4360 ACP102E RF103 ACA2786 BC547BU EFS2ACD SB107 MU356A
Product Description
Full Text Search
 

To Download MIC863 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MIC863
Micrel
MIC863
Dual Ultra Low Power Op Amp in SOT23-8 Final Information
General Description
The MIC863 is a dual low power operational amplifier in SOT23-8 package. It is designed to operate in the 2V to 5V range, rail-to-rail output, with input common-mode to ground. The MIC863 provides 450kHz gain-bandwidth product while consuming only a 4.2A supply current. With low supply voltage and SOT23-8 packaging, MIC863 provides two channels as general-purpose amplifiers for portable and battery-powered applications. Its package provides the maximum performance available while maintaining an extremely slim form factor. The minimal power consumption of this IC maximizes the battery life potential.
Features
* * * * * * * * * * * * * * SOT23-8 packaging 450kHz gain-bandwidth product 800kHz, -3dB bandwidth 4.2A supply current/channel Rail-to-rail output Ground sensing at input (common mode to GND) Drives large capactive loads (0.02F) Unity gain stable Portable equipment Medical instrument PDAs Pagers Cordless phones Consumer electronics
Applications
Ordering Information
Part Number Standard MIC863BM8 Marking A35 Pb-Free MIC863YM8 Marking A35 Ambient Temp. Range -40C to +85C Package SOT23-8
Typical Application
V+
10F
0.1F 510
1/ MIC863 2 1/ MIC863 2
VOUT
RF 50 100pF
Peak Detector Circuit for AM Radio
Micrel, Inc. * 1849 Fortune Drive * San Jose, CA 95131 * USA * tel + 1 (408) 944-0800 * fax + 1 (408) 944-0970 * http://www.micrel.com
January 2005
1
MIC863
MIC863
Micrel
Pin Configuration
OUTA 1 INA- 2 INA+ 3 V- 4
8 V+ 7 OUTB 6 INB- 5 INB+
SOT23-8 (M8)
Pin Description
Pin Number 1 2 3 4 5 6 7 8 Pin Name OUTA INA- INA+ V- INB+ INB- OUTB V+ Pin Function Output: Amplifier A Output Amplifier A Inverting (Input) Amplifier A Non-Inverting (Input) Negative Supply Amplifier B Non-Inverting (Input) Amplifier B Inverting (Input) Output: Amplifier B Output Positive Supply
MIC863
2
January 2005
MIC863
Micrel
Absolute Maximum Ratings (Note 1)
Supply Voltage (VV+ - V-) ......................................... +6.0V Differential Input Voltage (VIN+ - VIN-), Note 4 ...... +6.0V Input Voltage (VIN+ - VIN-) .................. V+ + 0.3V, V- -0.3V Lead Temperature (soldering, 5 sec.) ....................... 260C Output Short Circuit Current Duration .................. Indefinite Storage Temperature (TS) ........................................ 150C ESD Rating, Note 3
Operating Ratings (Note 2)
Supply Voltage (V+ - V-) .......................... +2.0V to +5.25V Ambient Temperature Range ..................... -40C to +85C Package Thermal Resistance JA (Using 4 layer PCB) ................................. 100C/W CA(Using 4 layer PCB) ................................... 70C/W
Electrical Characteristics
V+ = +2V, V- = 0V, VCM = V+/2; RL= 500k to V+/2; TA= 25C, unless otherwise noted. Bold values indicate -40C TA +85C. Symbol Parameter Condition Min Typ Max Units VOS Input Offset Voltage Differential Offset Voltage Input Offset Voltage Temp Coefficient IB IOS VCM CMRR PSRR AVOL VOUT VOUT GBW PM BW SR ISC IS Input Bias Current Input Offset Current Input Voltage Range Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain CMRR > 50dB 0 < VCM < 1V Supply voltage change of 2V to 2.7V RL = 100k, VOUT 1.4VPP RL = 500k, VOUT 1.4VPP Maximum Output Voltage Swing Minimum Output Voltage Swing Gain-Bandwidth Product Phase Margin -3dB Bandwidth Slew Rate Short-Circuit Output Current RL = 500k RL = 500k RL = 200k, CL = 2pF, Av = 11 RL = 200k, CL = 2pF, Av = 11 AV = 1, CL = 2pF, RL = 1M AV = 1, CL = 2pF, RL = 1M, Positive Slew Rate = 0.17V/s Source Sink Supply Current (per Op Amp) Channel to Channel Crosstalk No Load Note 5 1.8 1.5 0.5 45 50 66 73 -6 -5 0.1 0.5 6 10 5 1 75 85 81 90 6 5 mV mV V/C pA pA V dB dB dB dB V V kHz kHz V/s mA mA 7 A dB
V+-3mV V+-1.4mV V-+0.5mV V-+ 3mV 320 69 600 0.33 2.6 2.2 3.5 -100
V+ = +2.7V, V- = 0V, VCM = V+/2; RL= 500k to V+/2; TA= 25C, unless otherwise noted. Bold values indicate -40C TA +85C. VOS Input Offset Voltage -6 0.1 6 mV -5 5 Differential Offset Voltage Input Offset Voltage Temp Coefficient IB IOS VCM CMRR PSRR AVOL Input Bias Current Input Offset Current Input Voltage Range Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain CMRR > 60dB 0 < VCM < 1.35V Supply voltage change from 2.7V to 3V RL = 100k, VOUT 2VPP RL = 500k, VOUT 2VPP 1 60 55 70 78 0.5 6 10 5 1.8 83 85 83 91 mV V/C pA pA V dB dB dB dB
January 2005
3
MIC863
MIC863
Symbol GBW PM BW SR ISC IS Parameter Gain-Bandwidth Product Phase Margin -3dB Bandwidth Slew Rate Short-Circuit Output Current Condition RL = 200k, CL = 2pF, Av = 11 RL = 200k, CL = 2pF, Av = 11 AV = 1, CL = 2pF, RL = 1M AV = 1, CL = 2pF, RL = 1M Positive Slew Rate = 0.17V/s Source Sink Supply Current (per Op Amp) Channel to Channel Crosstalk No Load Note 5 4.5 4.5 Min Typ 350 65 600 0.35 6.3 6.2 3.6 -120 7 Max
Micrel
Units kHz kHz V/s mA mA A dB
V+= +5V, V-= 0V, VCM= V+/2; RL= 500k to V+/2; TA= 25C, unless otherwise noted. Bold values indicate -40C TA +85C. VOS Input Offset Voltage Differential Offset Voltage Input Offset Voltage Temp Coefficient IB IOS VCM CMRR PSRR AVOL VOUT VOUT GBW PM BW SR ISC IS Input Bias Current Input Offset Current Input Voltage Range (from V-) Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain CMRR > 60dB 0 < VCM < 3.5V Supply voltage change from 3V to 5V RL = 100k, VOUT 4.0VPP RL = 500k, VOUT 4.0VPP Maximum Output Voltage Swing Minimum Output Voltage Swing Gain-Bandwidth Product Phase Margin -3dB Bandwidth Slew Rate Short-Circuit Output Current AV = 1, CL = 2pF, RL = 1M AV = 1, CL = 2pF, RL = 1M Positive Slew Rate = 0.2V/s Source Sink Supply Current (per Op Amp) Channel to Channel Crosstalk
Note 1. Note 2. Note 3. Note 4. Note 5.
-6 -5
0.1 0.5 6 10 5
6 5
mV mV V/C pA pA V dB dB dB dB V V kHz kHz V/s mA mA
3.5 60 60 73 78
4.1 85 86 81 88
RL = 500k RL = 500k RL = 200k, CL = 2pF, Av = 11
V+-3mV V+-1.3mV V-+0.7mV V-+3mV 450 63 800 0.35 17 18 23 27 4.2 -120 8
No Load Note 5
A dB
Exceeding the absolute maximum rating may damage the device. The device is not guaranteed to function outside its operating rating. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. Pin 4 is ESD sensitive Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is likely to increase. DC signal referenced to input. Refer to Typical Characteristics graphs for AC performance.
MIC863
4
January 2005
MIC863
Micrel
DC Performance Characteristics
Supply Current vs. Supply Voltage
5.4 5.0 4.6 4.2 3.8 3.4 3.0 2.6 2.2 1.8 1.4 1.0
OFFSET VOLTAGE (mV)
Offset Voltage vs. Common-Mode Voltage
1.2 1.0 0.8 -40C 0.6 0.4 25C 0.2 85C 0 -0.2 -0.4 -0.6 -0.8 -1.0
-1.35 -1.08 OFFSET VOLTAGE (mV)
Offset Voltage vs. Common-Mode Voltage
1.2 1.0 0.8 0.6 -40C 0.4 25C 0.2 85C 0 -0.2 -0.4 -0.6 -0.8 V = 2.5V -1.0 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 COMMON-MODE VOLTAGE (V)
SUPPLY CURRENT (A)
85C
25C
-45C
V = 1.35V
0.27 0.54 0.81 1.08 -0.54 -0.27 1.35 0
0.90 1.06 1.22 1.38 1.54 1.70 1.86 2.02 2.18 2.34 2.50
SUPPLY VOLTAGE (V)
COMMON-MODE VOLTAGE (V)
Short Circuit Current vs. Supply Voltage
33 30 Sourcing -40C 27 24 21 18 25C 15 85C 12 9 6 3 0 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 SUPPPLY VOLTAGE (V) SHORT-CIRCUIT CURRENT (mA)
SHORT-CIRCUIT CURRENT (mA)
Short Circuit Current vs. Supply Voltage
44 40 Sinking 36 32 28 24 20 16 12 8 4 0
1.06 1.22 0.9
-0.81
Output Voltage vs. Output Current
1.35 Sourcing V = 1.35V 1.215 1.08 0.945 0.81 0.675 0.54 0.405 25C -40C 0.27 0.135 85C 0 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 OUTPUT CURRENT (mA)
-40C
25C 85C
1.38
1.54
1.86
2.02
2.18
2.34
1.7
SUPPLY VOLTAGE (V)
Output Voltage vs. Output Current
2.75 2.50 Sourcing 2.25 2.00 1.75 1.50 1.25 1.00 -40C 0.75 25C 0.50 0.25 85C 0 0 -3 -6 -9 -12-15-18-21-24-27-30 OUTPUT CURRENT (mA) OUTPUT VOLTAGE (V)
Output Voltage vs. Output Current
0.135 25C 0 Sinking V = 1.35V -0.135 85C -0.270 -0.405 -0.540 -40C -0.675 -0.810 -0.945 -1.080 -1.215 -1.350 0 1 2 3 4 5 6 7 8 9 10 OUTPTU CURRENT (mA) OUTPUT VOLTAGE (V)
2.5
OUTPUT VOLTAGE (V)
Output Voltage vs. Output Current
0.25 25C 0 85C -0.25 -0.5 -0.75 -1 -40C -1.25 -1.5 -1.75 -2 Sinking -2.25 V = 2.5V -2.5 0 4 8 12 16 20 24 28 32 36 40 OUTPUT CURRENT (mA)
OUTPUT VOLTAGE (V)
Short Circuit Current vs. Temperature
SHORT-CIRCUIT CURRENT (mA)
SHORT CIRCUIT CURRENT (mA) 29 24 19 14 9 4 V = 1.35V -1 Sinking -6 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) V = 2.5V 35 30 25 20 15 10 5
Short Circuit Current vs. Temperature
SHORT CIRCUIT CURRENT (mA) 30 25 Sinking
Short Circuit Current vs. Temperature
Sourcing 2.5V 20 15 10 5 0 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) 1.35V
V = 2.5V
V = 1.35V
0 -40 -20 0 20 40 60 80 100 TEMPERATURE (C)
January 2005
5
MIC863
MIC863
Micrel
Supply Current per Channel vs. Temperature
6 SUPPLY CURRENT/CH (A) V = 2.5V 5 4 3 2 1 0 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) V = 1.35V
OFFSET VOLTAGE (mV)
Offset Voltage vs. Temperature
0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) V = 2.5V V = 1.35V
MIC863
6
January 2005
MIC863
Micrel
AC Perfomance Characteristics
Gain Bandwidth and Phase Margin
50 40 30 20 10 0 -10 -20 Av = 11 -30 V+ = +1.5V V- = -0.5V RF = 200k -40 C = 2.0pF R = 1M L L -50 1k 10k 100k FREQUENCY 225 180 135 90 45 0 -45 -90 -135 -180 -225
Gain Bandwidth and Phase Margin
50 40 30 20 10 0 -10 Av = 11 V = 1.35V -20 CL = 2pF -30 RF = 200k -40 R = 1M L -50 100k 1k 10k FREQUENCY (Hz) 225 180 135 90 45 0 -45 -90 -135 -180 -225
Gain Bandwidth and Phase Margin
50 40 30 20 10 0 -10 Av = 11 V = 2.5V -20 CL = 2pF -30 R = 200k F -40 R = 1M L -50 100k 1k 10k FREQUENCY (Hz) 225 180 135 90 45 0 -45 -90 -135 -180 -225
PHASE MARGIN ()
PHASE ()
1M
1M
1M
Gain Bandwidth Frequency Response
25 20 15 10 5 0 -5 Av = 2 V = 1.35V -10 CL = 2pF -15 R = 20k F -20 R = 1M L -25 100k 1k 10k FREQUENCY (Hz) 225 180 135 90 45 0 -45 -90 -135 -180 -225
Gain Bandwidth Frequency Response
25 20 15 10 5 0 -5 Av = 2 V = 2.5V -10 CL = 2pF -15 RF = 20k -20 R = 1M L -25 100k 1k 10k FREQUENCY (Hz) 225 180 135 90 45 0 -45 -90 -135 -180 -225
Unity Bandwidth Frequency Response
20 15 10 5 0 -5 -10 Av = 1 -15 V+ = +1.5V V- = -0.5V -20 C = 1.7pF L -25 R = 1M L -30 1k 10k 100k FREQUENCY 180 135 90 45 0 -45 -90 -135 -180 -225 -270
1M
1M
1M
Unity Gain Frequency Response
20 15 10 5 225 180 135 90 20 15 10 5
Unity Gain Frequency Response
225 180 135 90 45 0 -45 -90 -135 -180 1M -225
V+
PHASE ()
PHASE ()
GAIN (dB)
0 -5 -10 -15 Av = 1 V = 1.35V -20 C = 2pF L -25 R = 1M L -30 100k 1k 10k FREQUENCY (Hz)
45 0 -45 -90 -135 -180 1M -225
GAIN (dB)
0 -5 -10 -15 Av = 1 V = 2.5V -20 C = 2pF L -25 R = 1M L -30 100k 1k 10k FREQUENCY (Hz)
FET Probe RF V-- CL
Close Loop Unity Gain Frequency Response
18 15 12 9
0.1F 1F 0.01F 1000pF
Close Loop Unity Gain Frequency Response
18 12 9 GAIN (dB) 6 3 0 -3 -6 -9 Av = 1 V = 2.5V -12 100k 10k 1k 100 FREQUENCY (Hz)
2pF 0.1F 1F 100pF 1000pF
Gain Bandwidth and Phase Margin vs. Capacitive Load
500
GAIN BANDWIDTH (kHz)
80 V = 2.5V Gain Bandwidth 70 60 50 40 Phase Margin 30 20 10 0 10 100 1000 CAPACITIVE LOAD (pF)
PHASE MARGIN ()
15
0.01F
450 400 350 300 250 200 150 100 50 0 1
GAIN (dB)
100pF
6 3 0 -3 -6 -9 Av = 1 V = 1.35V -12 100k 10k 1k 100 FREQUENCY (Hz)
2pF
1M
1M
January 2005
7
MIC863
PHASE MARGIN ()
PHASE ()
PHASE ()
GAIN (dB)
GAIN (dB)
GAIN (dB)
PHASE ()
GAIN (dB)
GAIN (dB)
GAIN (dB)
MIC863
Micrel
Gain Bandwidth and Phase Margin vs. Capacitive Load
400
GAIN BANDWIDTH (kHz)
PSRR vs. Frequency
80
350 300 250 200 150 100 50 0 1 Phase Margin
V = 1.35V Gain Bandwidth
200k
PHASE MARGIN ()
70 60 50 40 30 20 10
V+ 20k FET Probe RF 50 V- CL
PSRR (dB)
90 80 70 60 50 40 30 20 10 0 V+ = 5V -10 1 10 100 1k 10k 100k 1M FREQUENCY (Hz)
0 10 100 1000 CAPACITIVE LOAD (pF)
PSRR vs. Frequency
INPUT VOLTAGE NOISE (nV/rtHz) 100 80 PSRR (dB) 60 40 20 0 V+ = 2.7V -20 1 10 100 1k 10k 100k 1M FREQUENCY (Hz)
MIC863 Input Voltage Noise vs. Frequency
INPUT VOLTAGE NOISE (nV/rtHz)
400 350 300 250 200 150 100 50 V = 1.35V 0 1 10 100 1000 1k FREQUENCY (Hz)
400 350 300 250 200 150 100
MIC863 Input Voltage Noise vs. Frequency
50 V = 2.5V 0 1 10 100 1000 1k FREQUENCY (Hz) 10000 10k
10000 10k
-40 -45
Channel-to-Channel Crosstalk
CROSSTALK (dB)
-50 -55 -60 -65 -70 1k 10k FREQUENCY (Hz) 100k
MIC863
8
January 2005
MIC863
Micrel
Functional Characteristics
Small Signal Pulse Response Test Circuit 3: AV = 1 Small Signal Pulse Response Test Circuit 3: AV = 1
INPUT 50mV/div
INPUT 50mV/div
OUTPUT 50mV/div
TIME 10s/div
OUTPUT 50mV/div
AV = 1 V+ = +1.35V V- = -1.35V CL = 2pF RL = 1M
AV = 1 V+ = 2.5V V- = -2.5V CL = 2pF RL = 1M
TIME 10s/div
Small Signal Pulse Response Test Circuit 3: AV = 1
Small Signal Pulse Response Test Circuit 3: AV = 1
INPUT 50mV/div
OUTPUT 50mV/div
TIME 10s/div
OUTPUT 50mV/div
AV = 1 V+ = 1.35V V- = -1.35V CL = 50pF RL = 1M
INPUT 50mV/div
AV = 1 V+ = 2.5V V- = -2.5V CL = 50pF RL = 1M
TIME 10s/div
Small Signal Pulse Response Test Circuit 3: AV = 1
Small Signal Pulse Response Test Circuit 3: AV = 1
INPUT 50mV/div
OUTPUT 50mV/div
TIME 10s/div
OUTPUT 50mV/div
AV = 1 V+ = 1.35V V- = -1.35V CL = 100pF RL = 1M
INPUT 50mV/div
AV = 1 V+ = 2.5V V- = -2.5V CL = 100pF RL = 1M
TIME 10s/div
January 2005
9
MIC863
MIC863
Micrel
Small Signal Pulse Response Test Circuit 3: Av = 1
INPUT 50mV/div
Small Signal Pulse Response Test Circuit 4: AV = -1
INPUT 50mV/div
AV = 1 V+ = 1.5V V- = -0.5V CL = 2pF RL = 1M
AV = -1 V+ = 1.35V V- = -1.35V CL = 2pF RF = 20k RL = 1M
OUTPUT 50mV/div
TIME 10s/div
OUTPUT 50mV/div
TIME 10s/div
Small Signal Pulse Response Test Circuit 4: AV = -1
Small Signal Pulse Response Test Circuit 4: AV = -1
AV = -1 V+ = 2.5V V- = -2.5V CL = 2pF RF = 20k RL = 1M
INPUT 50mV/div
INPUT 50mV/div
OUTPUT 50mV/div
TIME 10s/div
OUTPUT 50mV/div
AV = -1 V+ = 1.35V V- = -1.35V CL = 50pF RF = 20k RL = 1M
TIME 10s/div
Small Signal Pulse Response Test Circuit 4: AV = -1
Large Signal Pulse Response Test Circuit 3: Av = 1
INPUT 50mV/div
OUTPUT 200mV/div
AV = -1 V+ = 2.5V V- = -2.5V CL = 50pF RF = 20k RL = 1M
AV = 1 V+ = 1.5V V- = -0.5V CL = 2pF RL = 1M Positive Slew Rate = 0.17V/s Negative Slew Rate = 0.33V/s TIME 10s/div
OUTPUT 50mV/div
TIME 10s/div
MIC863
10
January 2005
MIC863
Micrel
Large Signal Pulse Response Test Circuit 3: AV = 1
AV = 1 V+ = 1.35V V- = -1.35V CL = 2pF RL = 1M
Large Signal Pulse Response Test Circuit 3: AV = 1
AV = 1 V+ = 2.5V V- = -2.5V CL = 2pF RL = 1M
OUTPUT 500mV/div
Positive Slew Rate = 0.17V/s Negative Slew Rate = 0.354V/s
OUTPUT 1V/div
Positive Slew Rate = 0.197V/s Negative Slew Rate = 0.359V/s
TIME 10s/div
TIME 10s/div
Large Signal Pulse Response Test Circuit 3: AV = 1
AV = 1 V+ = 1.35V V- = -1.35V CL = 50pF RL = 1M
Large Signal Pulse Response Test Circuit 3: AV = 1
AV = 1 V+ = 2.5V V- = -2.5V CL = 50pF RL = 1M
OUTPUT 500mV/div
Positive Slew Rate = 0.177V/s Negative Slew Rate = 0.34V/s
OUTPUT 1V/div
Positive Slew Rate = 0.20V/s Negative Slew Rate = 0.355V/s
TIME 10s/div
TIME 10s/div
Large Signal Pulse Response Test Circuit 3: AV = 1
AV = 1 V+ = 1.35V V- = -1.35V CL = 100pF RL = 1M
Large Signal Pulse Response Test Circuit 3: AV = 1
AV = 1 V+ = 2.5V V- = -2.5V CL = 100pF RL = 1M
OUTPUT 500mV/div
OUTPUT 1V/div
Positive Slew Rate = 0.175V/s Negative Slew Rate = 0.383V/s
Positive Slew Rate = 0.197V/s Negative Slew Rate = 0.343V/s
TIME 10s/div
TIME 10s/div
January 2005
11
MIC863
MIC863
Micrel
Rail-to-Rail Output Operation
Rail-to-Rail Output Operation
INPUT 1V/div
AV = 2 V+ = 1.35V V- = -1.35V CL = 2pF RL = 1M RF = 20k
INPUT 1V/div
VPP = 2.62V
AV = 2 V+ = 2.5V V- = -2.5V CL = 2pF RL = 1M RF = 20k
VPP = 5V
OUTPUT 1V/div
TIME 250s/div
OUTPUT 1V/div
TIME 250s/div
Rail-to-Rail Output Operation
Rail-to-Rail Output Operation
INPUT 1V/div
AV = 2 V+ = 1.35V V- = -1.35V CL = 2pF RL = 5k RF = 20k
INPUT 2V/div
VPP = 2.7V OUTPUT 2V/div
AV = 2 V+ = 2.5V V- = -2.5V CL = 2pF RL = 5k RF = 20k
VPP = 5V
OUTPUT 1V/div
TIME 250s/div
TIME 250s/div
MIC863
12
January 2005
MIC863
Micrel Supply and Loading Resistive Considerations The MIC863 is intended for single supply applications configured with a grounded load. It is not advisable to operate the MIC863 under either of the following conditions when the load is less than 20k and the output swing is greater than 1V(peak-to-peak): 1). A grounded load and split supplies (V) or 2). A single supply where the load is terminated above ground. Under the above conditions, there may be some instability when the output is sinking current.
Applications Information
Power Supply Bypassing Regular supply bypassing techniques are recommended. A 10F capacitor in parallel with a 0.1F capacitor on both the positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close to the op amp as possible and all capacitors should be low ESL (equivalent series inductance), ESR (equivalent series resistance). Surface-mount ceramic capacitors are ideal.
January 2005
13
MIC863
MIC863
Micrel
Package Information
0.20 0.38 0.22 0.38 0.22
0.65REF
3.00 2.60
1.75 1.50
1.95REF 3.00 2.80
10 0
0.20 0.09
1.45 0.90
1.30 0.90
0.15 0.00
SOT23-8 (M8)
MIC863
14
January 2005
MIC863
Micrel
January 2005
15
MIC863
MIC863
Micrel
MICREL, INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL
+ 1 (408) 944-0800
FAX
+ 1 (408) 944-0970
WEB
http://www.micrel.com
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel, Inc. (c) 2005 Micrel, Incorporated
MIC863
16
January 2005


▲Up To Search▲   

 
Price & Availability of MIC863

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X